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Abstract

We characterize the functionals which are Mosco-limits, in the L2(Ω) topology,
of some sequence of functionals of the kind

Fn(u) :=

∫

Ω
αn(x)|∇u(x)|2 dx ,

where Ω is a bounded domain of R
N (N ≥ 3). It is known that this family of

functionals is included in the closed set of Dirichlet forms. Here, we prove that
the set of Dirichlet forms is actually the closure of the set of diffusion functionals.
A crucial step is the explicit construction of a composite material whose effective
energy contains a very simple non-local interaction.

keywords : Homogenization, Mosco-convergence, Γ-convergence, Dirichlet forms, com-
posite materials.

1 Introduction

Many physical situations are described by the minimization of a diffusion functional of
the kind

Fα(u) :=

∫

Ω

α(x)|∇u(x)|2 dx , (1.1)

where the diffusion coefficient of the material α may vary from place to place. An impor-
tant area of investigation is the asymptotic analysis of such functionals when α depends
on some small parameter. This is the case for instance when studying a diffusion process
in a porous medium or in a composite one in which the small parameter is characteristic
of the length-scale of the in-homogeneities. Then one has to consider a family (Fαn

) of
diffusion functionals and to search for its limit F . The functional F describes the effective
properties of the homogenized material. These properties can sometimes be described by
a homogenized diffusion coefficient αhom but the homogenized material can also be non
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isotropic : it is then described by a diffusion matrix A(x) and the limit functional takes
the form :

∫

Ω

∇u(x) · A(x) · ∇u(x) dx . (1.2)

It has been proved [17] that the limit of functionals (1.1) takes the form (1.2) when the
sequence of diffusion coefficients (αn) and their inverses (α−1

n ) are bounded by a fixed real
M . This is still true under weaker assumptions [4] but not in the general case. Examples
have been given (cf. [4], [2], [3] and [16]) in which non local interactions arise at the limit.
These interactions are represented by a non-negative measure µ on Ω × Ω and the limit
functional F contains the non-local term or jumping term :

∫

Ω×Ω

(u(x) − u(y))2µ(dx, dy). (1.3)

Other examples [18] have been given in which the limit functional contains a so-called
killing term of the form

∫

Ω

(u(x))2ν(dx), (1.4)

where ν is a non-negative measure on Ω.
A natural question is to identify the different functionals which can be obtained as the

asymptotic limits of diffusion problems. It is known [16] that any limit functional has to
be a Dirichlet form, that is, in the regular case, a sum of terms of kind (1.2), (1.3) and
(1.4). Here we consider the following inverse problem : is any given Dirichlet form the
limit of a sequence of functionals of kind (1.1) ? Very recently Briane and Tchou [6] gave
a partial positive answer to this question. They proved that any non-local term (1.3), in
which the measure µ has the particular form 1E(x)1E(y) dxdy, can be reached. Our main
results state that any Dirichlet form can actually be reached :

Let us call objective those functionals which vanish for constant fields u = c, or in an
equivalent way, which are invariant when adding a constant :

∀c ∈ R, F (u + c) = F (u). (1.5)

We must consider two fundamental different situations :
i) if no Dirichlet condition is imposed in the initial diffusion problem, then the func-

tionals (1.1) we have to consider are objective ones and any limit inherits this property.
We focus on this situation in the first part of the paper where we prove that any objective
Dirichlet form can be reached. In particular any non-local interaction of type (1.3) is the
limit of some sequence of diffusion functionals. At the opposite, as they are non-objective
quantities, killing terms cannot be obtained.

ii) if a Dirichlet condition is imposed in the initial diffusion problem, we prove (in
section 7) that all possible killing terms can also be obtained.

Let us be more precise. The considered functionals are defined on L2(Ω) where Ω is
a bounded domain of R

N (N ≥ 3). For sake of simplicity we assume that Ω is the unit
cube. We study the Mosco-limit of these functionals for the L2(Ω) topology.
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Our main result (Theorem 1) states that the set of all objective Dirichlet forms coin-
cides with the closure of the set of all diffusion functionals of type (1.1). This result is
stated in section 2 where we fix our notations. The proof is obtained by the construc-
tion of a sequence of diffusion functionals (Fαn

) converging to a given objective Dirichlet
form F . This is achieved in several steps. First, using the Yosida-Deny regularization
procedure, we restrict our study to the case where F is a continuous functional on L2(Ω)
(Theorem 3), then F takes the form (1.3). In a second step, discretizing the measure µ
which appears in (1.3), we approximate F by a finite combination of elementary non-local
interactions (Theorem 4). Here we call elementary non-local interaction a term of kind
(1.3) where µ takes the particular form

µ(dx, dy) := δx+w(dy)1Ω(x + w)f(x) dx , (1.6)

w being a given vector of R
N and f a non-negative function in L∞(Ω). In this particular

case, the non-local term (1.3) takes the form
∫

Ω

(u(x) − u(x + w))2
1Ω(x + w)f(x) dx . (1.7)

Note that an elementary non-local interaction has direction and range fixed by w. In
a third crucial step, we exhibit an explicit composite diffusive material whose effective
properties contain the prescribed elementary interaction (1.6) (Theorem 5). An induc-
tion argument allows us to extend this result to a finite combination of such elementary
interactions (Theorem 6).

In the last section (section 7), we extend the previous results to the family of diffusion
functionals subjected to a Dirichlet condition. We prove (Theorem 2) that the closure of
this family coincides with the set of all Dirichlet forms. The point is that any killing term
(1.4) can be seen as the result of a non-local interaction between Ω and the set where the
Dirichlet condition is imposed. All these results were partially announced in [7].

Our results are stated when the dimension N of the ambient space is greater than
or equal to three. The reader could notice that, the higher is the dimension, the easier
are the proofs of our results. That is why our constructions, although valid for N ≥ 3,
are particularly adapted to the three-dimensional case. Our results are not valid in the
one or two-dimensional cases : indeed, the crucial construction of a composite diffusive
material converging to a non-local one cannot be performed in these cases. The point
is that the topologies of R or R

2 do not allow to introduce a set connecting two distant
points without modifying drastically the diffusion process of the remaining part. To our
knowledge, the characterization of the closure of the diffusion functionals is still an open
problem in these cases.

The density results proved in this paper cannot be easily transposed to the case of
elasticity functionals. Indeed, in this vector case, the theory of Dirichlet forms cannot be
applied and the effective properties of a linear elastic composite material can fundamen-
tally differ from those described by terms analogous with (1.2), (1.3) or (1.4). It has been
proved in [19] that higher-order gradient terms can be present. In a forthcoming paper [8],
using a similar approach as in the present study, we will prove that the Mosco-closure of
the set of linear elasticity functionals coincides with the set of all non-negative, quadratic
and lower semicontinuous functionals.
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2 Main density results.

2.1 Notations and definitions :

Let Ω := (0, 1)N be the unit cube of R
N (N ≥ 3). We denote L2(Ω) the usual Lebesgue

space endowed with the norm ‖u‖L2(Ω) := (
∫

Ω
|u(x)|2 dx)1/2.

Let B := (0, 1)N−1 × {0} denote a face of the cube Ω. We denote H1
B(Ω) := {u ∈

H1(Ω), u = 0 on B} where H1(Ω) is the usual Sobolev space, endowed with its standard
norm.

We will also denote L∞(Ω) the set of all essentially bounded Lebesgue measurable
functions endowed with the usual norm ‖u‖L∞(Ω) := inf{K; |u(x)| ≤ K for a.e. x in Ω}
and L∞

++(Ω) the subset :

L∞
++(Ω) := {ϕ ∈ L∞(Ω), 1/ϕ ∈ L∞(Ω), ϕ ≥ 0}.

We denote |D| the Lebesgue measure of any Borel set D and −
∫
D

u := |D|−1 ∫
D

u dx the
mean value of any function u ∈ L1(D).

For any positive integer p, we denote ωp the unit ball of R
p and |ωp| its volume.

2.2 Dirichlet forms

The functionals F we consider in this paper are defined on L2(Ω) and take value in
R ∪ {+∞}. They are proper non-negative quadratic functionals, i.e. there exist positive
semidefinite bilinear forms B on D(F ) := {u ∈ L2(Ω) : F (u) < +∞} such that
F (u) = B(u, u) for every u in D(F ). By proposition 11.9 of [11], these functionals are
characterized by the fact that, for any u and v in L2(Ω) and any t ≥ 0,

F (u) ≥ 0, F (tu) ≤ t2F (u), F (u + v) + F (u − v) ≤ 2F (u) + 2F (v). (2.1)

They are said to be lower semicontinuous if they satisfy, for any u ∈ L2(Ω) and any
sequence (un) converging to u :

lim inf
n−→∞

F (un) ≥ F (u) . (2.2)

Such functionals are said to be Markovian if they satisfy for any u ∈ L2(Ω) :

F (u) ≤ F (u), (2.3)

where u denotes the truncated function u := sup(0, inf(1, u)).

Dirichlet forms : A proper functional which is non-negative, quadratic, Markovian and
lower semicontinuous is called a Dirichlet form ( cf. [14]). We denote D the set of all
Dirichlet forms on L2(Ω). They are characterized by (2.1), (2.3) and (2.2).

Regular Dirichlet forms : Let D(F ) denote the domain of F : D(F ) := {u ∈
L2(Ω), F (u) < +∞} and C0(Ω) (or C1

0(Ω)) the set of continuous (resp. continuously dif-
ferentiable) functions with compact support in Ω. If there exists a subset of D(F )∩C0(Ω)

dense in C0(Ω) for the uniform norm and in D(F ) for the norm
√

‖u‖2
L2(Ω) + F (u), then F
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is said to be a regular Dirichlet form. We denote Dr this important subclass of Dirichlet
forms. The Deny-Beurling formula [5] states that any regular Dirichlet form admits on
C1

0(Ω) the following representation (in which ν and µ are non-negative Radon measures
respectively on Ω and Ω×Ω, while η is a Radon measure on Ω taking values in the set of
non-negative symmetric matrices) :

F (u) =
N∑

i,j=1

∫

Ω

∂u

∂xi

(x)
∂u

∂xj

(x) ηij(dx) +

∫

Ω

(u(x))2ν(dx) +

∫

Ω×Ω

(u(x) − u(y))2µ(dx, dy).

(2.4)

It is then the sum of three terms of type (1.2) (with A(x)dx replaced by η(dx)), (1.4) and
(1.3).

In the representation formula (2.4), the part of the measure µ supported by the diag-
onal ∆ := {(x, x), x ∈ Ω} does not play any role : then we assume

µ(∆) = 0. (2.5)

In the same way, note that only the symmetric part µsym of the measure µ, defined by

µsym(A × B) =
1

2
(µ(A × B) + µ(B × A)) (2.6)

plays a role in (2.4). However we do not assume that µ is symmetric. This allows us to
use a simpler notation in the sequel.

Note that a functional F defined by (2.4) is not always a Dirichlet form : it may be not
lower semicontinuous. However, if the measures ν and µ(dx, Ω) do not charge polar sets
(i.e. sets with vanishing H1-capacity [13]) and if α(x) ∈ L∞

++(Ω) the particular functional

Fα,ν,µ(u) :=





∫

Ω

α(x)|∇u(x)|2 dx +

∫

Ω

(u(x))2ν(dx)

+

∫

Ω×Ω

(u(x) − u(y))2µ(dx, dy), if u ∈ H1(Ω),

+∞ otherwise,

(2.7)

can be proved (cf. [9], [10]) to be lower semicontinuous. Then it is a Dirichlet form.

Continuous Dirichlet forms : We denote Dc the subset of all Dirichlet forms F , with
D(F ) = L2(Ω), which are continuous in the strong topology of L2(Ω). These functionals
play an important role in our proofs. They are regular and, in their representation (2.4),
the measures ηij vanish and the measures ν(dx), µsym(dx, Ω) are absolutely continuous
with respect to dx with densities in L∞(Ω). Here µsym(dx, Ω) represents the projection of
the symmetric part of µ.

Let us sketch the proof of this characterization (for details, refer to [9]) : since F is
continuous, there exists a constant C such that, for any u in L2(Ω),

F (u) ≤ C‖u‖2
L2(Ω). (2.8)

First, let us apply (2.8) to functions u, of class C1, depending only on one component of
x (say u(x) = f(xi)). Using Jensen inequality we get that the linear functional f −→
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∫ 1

0
f ′(xi) ηii(dxi) is continuous for the strong topology of L2(0, 1) (here ηii(dxi) denotes

the projection of ηii(dx)). Hence ηii(dxi) takes the form ηii(dxi) = g(xi) dxi with a
continuous density g. If g 6= 0, considering functions f which vanish out of an interval I
where g(xi) > ǫ > 0, we get

∫

I

f ′(xi)
2 dxi ≤ Cǫ−1

∫

I

f(xi)
2 dxi.

Clearly this inequality cannot hold for every f . Then g has to be identically null. There-
fore ηii, Tr(η) and then η are null.

Now, for any open set A ⊂ Ω and any compact subset K ⊂ A, there exists a function
u of class C1, such that 1K ≤ u ≤ 1A. Inequality (2.8) implies ν(K) ≤ C|A|. This
being true for any K ⊂ A, we have ν(A) ≤ C|A|. This is extended to any Borel set
by approximation which proves the result for ν. Using the same function u, we get also
2µsym(K × Ac) ≤ C|A| and then 2µsym(A × Ac) ≤ C|A|. Let us introduce the following
neighborhood ∆n of the diagonal ∆ : ∆n := {(x, y) ∈ Ω × Ω : ‖x − y‖ > 1/n} and µn

the restriction of µsym to ∆n. When the diameter of A is small enough (lower than 1/n),
we have

µn(A × Ω) = µn(A × Ac) ≤ µsym(A × Ac) ≤ C

2
|A|.

This is enough to prove that µn(dx, Ω) is absolutely continuous with respect to dx with
a density bounded by C/2. Letting n tend to infinity and using the fact that µ(∆) = 0,
we obtain the same property for the measure µsym(dx, Ω).

Conversely, if ν and µ are Radon measures on Ω and Ω × Ω such that ν(dx) and
µ(dx, Ω) are absolutely continuous with respect to dx with densities in L∞(Ω), then it is
easy to see that the functional

F0,ν,µ(u) :=

∫

Ω

(u(x))2 ν(dx) +

∫

Ω×Ω

(u(x) − u(y))2 µ(dx, dy) , u ∈ L2(Ω) , (2.9)

belongs to Dc. ⊓⊔

Possible measures µ, are those which correspond to interactions with fixed direction
and range. We call elementary interactions these measures and denote their set E :

E := {δx+w(dy)f(x)1Ω(x + w)dx, w ∈ Ω2, f ∈ L∞(Ω), f ≥ 0} , (2.10)

where Ω2 represents the set of vectors in R
N with dyadic components

Ω2 := {w ∈ R
N , ∃p ∈ N : 2pw ∈ N

N}.

This restriction to vectors with dyadic components is purely technical. Its interest appears
in the proof of theorem 5.

Finite combinations of such measures are also possible. We call atomic interactions
these measures and denote their set A :

A :=

{
n∑

i=1

δx+wi
(dy)fi(x)1Ω(x + wi) dx, n ∈ N, wi ∈ Ω2, fi ∈ L∞(Ω), fi ≥ 0

}
.

(2.11)
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Note that, as no confusion can arise, we will also call elementary interaction or atomic
interaction the functional F0,0,µ when µ belongs to E or to A.

Objective Dirichlet forms : We will also use the subset Di of objective Dirichlet forms
characterized by the property :

∀c ∈ R, F (c) = 0 . (2.12)

This property is clearly equivalent to (1.5). Indeed the quantity F (u + c) − F (u) − F (c)
which is linear in c and lower-bounded by −F (u) has to vanish.

The sets of regular or continuous objective Dirichlet forms are denoted respectively
Dri and Dci. Their characterization is obvious : the killing measure ν has to vanish.

Diffusion Dirichlet forms : We call Dd the subset of isotropic diffusion functionals
with non-degenerated and bounded diffusion coefficient, i.e. the set

Dd := {Fα,0,0 ; α ∈ L∞
++(Ω)} . (2.13)

Note that there is no uniform bounds for the diffusion coefficient in the definition of Dd :
very low or very high diffusion coefficients are admissible. Clearly Dd ⊂ Di. The fact
that Dd is a relatively “small” subset of diffusion forms does not weaken our results : the
smaller Dd, the stronger the density result.

We will also consider the set D0 of diffusion functionals submitted to a Dirichlet
condition on B :

D0 := {F 0
α,0,0 ; α ∈ L∞

++(Ω)} (2.14)

where

F 0
α,0,0(u) :=





∫

Ω

α(x)|∇u(x)|2 dx if u ∈ H1(Ω) and u = 0 on B,

+∞ otherwise.

(2.15)

2.3 Mosco-convergence

The Mosco-convergence theory, introduced by U. Mosco [15], has been recognized as an
appropriate framework to study the limit of convex variational problems. We refer to [1]
for a detailed description of this theory. Let us recall the following characterization of the
Mosco-convergence of a sequence of convex functionals :

Definition 1 A sequence of convex functionals (Fn) Mosco-converges to a functional F
in the L2(Ω) topology, if and only if it satisfies the two following properties :
i) Lower-bound inequality : For any sequence (un) converging weakly to some u in L2(Ω),
the following lower-bound inequality holds :

lim inf
n−→∞

Fn(un) ≥ F (u) .
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ii) Upper-bound inequality : For every u in L2(Ω), there exists an approximating sequence
(un) converging to u strongly in L2(Ω) such that

lim sup
n−→∞

Fn(un) ≤ F (u).

Then we write Fn

L2−M
−−−−−→F .

Remark 1 It is clear that a Mosco-convergence result is proved even if one consider in
(i) only sequences (un) with bounded “energy” (i.e. such that Fn(un) < M < +∞) and
in (ii) only functions u such that F (u) < +∞.

Remark 2 A Mosco-convergence result established for the L2(Ω) topology is also estab-
lished for the H1

B(Ω) topology if, for any u ∈ H1
B(Ω), one can impose to the approximating

sequence (un) in (ii) to converge to u strongly in H1
B(Ω). In that case we say that Fn

τ -converges to F and we write Fn
τ−→F .

Remark 3 If G is convex and continuous for the strong convergence of L2(Ω), then

Fn

L2−M
−−−−−→F =⇒ Fn + G

L2−M
−−−−−→F + G, (2.16)

Fn
τ−→F =⇒ Fn + G

τ−→F + G. (2.17)

Indeed, if G is convex and continuous for the strong convergence of L2(Ω), it is lower
semicontinuous for the weak convergence of L2(Ω). Then (2.16) follows immediately from
Definition 1. Assertion (2.17) is due to the fact that G is also continuous for the strong
convergence of H1

B(Ω).

Remark 4 For all c > 0, we have

Fn
τ−→F =⇒ Fn + cF 0

1,0,0
τ−→F + cF 0

1,0,0. (2.18)

Indeed, for any c > 0 the functional cF 0
1,0,0 is convex and lower semicontinuous for the

strong convergence of L2(Ω). Hence it is lower semicontinuous for the weak convergence
of L2(Ω). The lower-bound inequalities are assured. Consider now u such that F (u) +
cF 0

1,0,0(u) < +∞. Then u belongs to H1
B(Ω) and, as Fn τ -converges to F , there exists

a sequence (un) converging to u strongly in H1
B(Ω) such that lim sup Fn(un) ≤ F (u).

As cF 0
1,0,0 is continuous for the strong topology of H1

B(Ω), we have also lim sup Fn(un) +
cF 0

1,0,0(un) ≤ F (u) + cF 0
1,0,0(u).

Remark 5 Let (Fn) be a sequence which Mosco-converges to F for the L2(Ω)-topology (re-
spectively, which τ -converges to F ). Assume that, for any n, there exist a sequence (Fn,m)
which converges to Fn for the same topology as m tends to infinity. Then there exists a
sequence of integers (mn) such that the “diagonal” sequence (Fn,mn

) Mosco-converges to
F as n tends to infinity for the L2(Ω)-topology (resp., such that (Fn,mn

) τ -converges to
F ).
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It is proved in [1] (section 3.5) that the topology of Mosco-convergence is metrizable on
the set of proper lower semicontinuous convex functionals. Then, there exist a metric d1

and a pseudo-metric d2 on D, such that

Fn

L2−M
−−−−−→F ⇐⇒ d1(Fn, F ) → 0 and Fn

H1
B
−M

−−−−−→F ⇐⇒ d2(Fn, F ) → 0.

Hence, the topology τ associated to both convergence, is also metrizable :

Fn
τ−→F ⇐⇒ (d1 + d2)(Fn, F ) → 0.

The assertions of Remark 5 are nothing but the well known diagonalization property in
metric spaces.

Definition 2 Let U be a subset of D, We call Mosco-closure of U and denote U the set
of all possible Mosco-limits for the L2(Ω) topology of all sequences in U.

Note that, owing to Remark 5, we have U = U.

Remark 6 The set of all Dirichlet forms and the set of all objective Dirichlet forms are
closed :

D = D and Di = Di . (2.19)

Indeed, it is easily checked that any Mosco-limit is lower semicontinuous and that prop-
erties (2.1), (2.3) pass to the limit by Mosco-convergence. Then the Mosco-limit of any
sequence of Dirichlet forms has to be a Dirichlet form. In the same way property (1.5)
passes to the limit by Mosco-convergence : the limit of any sequence of objective Dirichlet
forms is objective.

Remark 7 Mosco-convergence in the L2(Ω) topology is clearly a stronger notion than
Γ-convergence for the strong topology of L2(Ω) (refer to [11] for definition and properties
of Γ-convergence). Then the Mosco-closure of a set U is contained in its Γ-closure, i.e.
in the set of all Γ-limits of all sequences in U. However, the closure results (2.19) remain
true even if one uses the Γ-convergence in the strong topology of L2(Ω) [16]. Therefore all
our density results can be interpreted in terms of Γ-convergence for the strong topology of
L2(Ω).

2.4 Main results

This paper is devoted to the proof of the two following density results :

Theorem 1 The Mosco-closure in the L2(Ω)-topology of the set Dd of diffusion function-
als coincides with the set of objective Dirichlet forms : Dd = Di.
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Proof : This proof is based on several intermediate results the proofs of which are
postponed to the three following sections. Let F be a Dirichlet form in Di. We prove
in Theorem 3, that there exists a sequence (F0,0,µm

) of continuous objective Dirichlet
forms which Mosco-converges to F for the L2(Ω) topology. Then, we prove in Theorem 4
that, for any m, there exists a sequence (µm,n) of atomic interactions such that (F0,0,µm,n)

converges to F0,0,µm
. Finally, owing to theorem 6, there exists a sequence (Fαm,n,p,0,0) in

Dd which converges to F0,0,µm,n
. Therefore, owing to Remark 5, there exists a diagonal

sequence in Dd which converges to F . ⊓⊔

Remark 8 Owing to remarks 9, 10, 12, Theorem 1 remains valid when replacing the
Mosco-convergence for the L2(Ω) topology by the τ -convergence.

As a consequence of the last remark, we prove in section 7 this second result :

Theorem 2 The Mosco-closure in the L2(Ω)-topology of the set D0 of diffusion func-
tionals submitted to a Dirichlet boundary condition coincides with the set of all Dirichlet
forms : D0 = D.

3 Moreau-Yosida approximation

Let F ∈ D be a Dirichlet form and λ a positive real number. The Moreau-Yosida approx-
imation of index λ of F [11] is the functional defined on L2(Ω) by

Yλ(F )(u) = inf
v∈L2(Ω)

{F (v) + λ‖u − v‖2
L2(Ω)}. (3.1)

Clearly Yλ(F ) is a Dirichlet form and is locally Lipschitz and then continuous on L2(Ω) :
Yλ(F ) ∈ Dc. On the other hand, if F ∈ Di, so is its Moreau-Yosida approximation
Yλ(F ).

Theorem 3 The sets of continuous Dirichlet forms Dc or objective continuous Dirichlet
forms Dci are respectively dense in D and Di : Dc = D and Dci = Di.

Proof : Consider the sequence (Yn(F )). It belongs to Dc (to Dci if F ∈ Di) and

lim
n

Yn(F )(u) = F (u) (3.2)

(see, e.g., [11], Remark 9.11). This proves the upper-bound inequality. Indeed, it is
enough to choose as an approximating sequence, the constant one un := u.

Now, consider a sequence (un) which converges weakly in L2(Ω) to some u. For any
n ≥ n0,

Yn(F )(un) ≥ Yn0(F )(un). (3.3)
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Moreover the functional Yn0 being convex and continuous for the strong topology of L2(Ω),
is lower semicontinuous for the weak topology. Hence , for any n0 ∈ N,

lim inf
n

Yn(F )(un) ≥ lim inf
n

Yn0(F )(un) ≥ Yn0(F )(u) .

Passing to the limit when n0 tends to infinity in the previous inequality, leads to the
lower-bound inequality : lim infn Yn(F )(un) ≥ F (u). ⊓⊔
The choice we made for the approximating sequence in the upper-bound inequlity clearly
implies :

Remark 9 Theorem 3 remains valid when replacing the Mosco-convergence for the L2(Ω)
topology by the τ -convergence.

4 Discretization of a non-local interaction

Here we use the concept of atomic interaction we defined in (2.11). We prove that any
continuous objective Dirichlet form can be approximated by such interactions :

Theorem 4 Let F ∈ Dci. There exists a sequence (µn) in A such that F0,0,µn
Mosco-

converges to F in the L2(Ω) topology.

Proof : Let us recall that any F ∈ Dci can be represented by a measure µ on Ω × Ω :

F (u) =

∫

Ω×Ω

(u(x) − u(y))2 µ(dx, dy).

Let n denote a sequence of integers tending to infinity of the form n = 2qn (with qn ∈ N).
We divide the domain Ω in nN elementary cubes

Ωn
I :=

(
i1 − 1

n
,
i1
n

)
×

(
i2 − 1

n
,
i2
n

)
× · · · ×

(
iN − 1

n
,
iN
n

)
, (4.1)

of centers cn
I where I = (i1, i2, . . . , iN) belongs to {1 . . . n}N (which we identify with

{1 . . . nN}) and we consider the sequence (µn) defined as follows

µn :=
nN∑

I=1

nN∑

I′=1

an
II′1Ωn

I
(x) δx+wn

II′
(dy)1Ω(x + wn

II′) dx (4.2)

where an
II′ := nNµ(Ωn

I × Ωn
I′) and wn

II′ := cn
I′ − cn

I . Note that, as every vector wn
II′ has

dyadic components, µn belongs to A.

Now let us prove that the sequence (F0,0,µn
) Mosco-converges to F0,0,µ, as n tends to

infinity.

Let (un) be a sequence with bounded energy (F0,0,µn
(un) < M < +∞) and converging

to some u weakly in L2(Ω). For any n, we define the piecewise constant function ūn by

ūn(x) :=
nN∑

I=1

(−
∫

Ωn
I

un)1Ωn
I
(x). (4.3)

11



Note that (un) converges also to u weakly in L2(Ω). The definitions of µn and ūn imply

F0,0,µn
(un) =

nN∑

I=1

nN∑

I′=1

an
II′|Ωn

I | −
∫

Ωn
I

[(un(x) − un(x + wn
II′))]

2 dx

≥
nN∑

I=1

nN∑

I′=1

an
II′|Ωn

I |
(
−
∫

Ωn
I

un(x) dx −−
∫

Ωn
I

un(x + wn
II′) dx

)2

≥
nN∑

I=1

nN∑

I′=1

an
II′

∫

Ωn
I

[(ūn(x) − ūn(x + wn
II′))]

2 dx

≥ F0,0,µn
(ūn). (4.4)

As F0,0,µ is continuous for the strong topology of L2(Ω), the measure µsym(dx, Ω) does not
charge the sets ∂Ωn

I . Hence F0,0,µn
(ūn) = F0,0,µ(ūn). As (ūn) converges to u weakly and

as F0,0,µ is lower semicontinuous for the weak topology, we get the lower-bound inequality

lim inf
n→∞

F0,0,µn
(un) ≥ lim inf

n→∞
F0,0,µ(ūn) ≥ F0,0,µ(u).

Now let u ∈ L2(Ω) such that F0,0,µ(u) ≤ M < +∞. By a density argument, we can
assume that u ∈ C1

0(Ω). We associate to the constant sequence un := u the sequence (ūn)
defined by (4.3). As (ūn) converges uniformly to u, we have

F0,0,µn
(un) = F0,0,µn

(ūn) + O(
1

n
) = F0,0,µ(ūn) + O(

1

n
). (4.5)

Hence lim sup F0,0,µn
(un) ≤ lim sup F0,0,µ(ūn) = F0,0,µ(u) and the upper-bound inequality

is proved. ⊓⊔
The way we chose the approximating sequence (un) clearly shows that :

Remark 10 Theorem 4 remains valid when replacing the Mosco-convergence for the
L2(Ω) topology by the τ -convergence.

5 A crucial step : a homogenization result

Here we prove that any elementary interaction is the Mosco-limit of a sequence of diffusion
functionals in Dd. We explicitly construct a diffusive material containing very thin and
very high conductivity fibers which lead to the desired effective properties.

Theorem 5 Let α ∈ L∞
++(Ω) or α ≡ 0, and let µ(dx, dy) := δx+w(dy)1Ω(x + w)f(x)dx

in E. Then, there exists a sequence (αn) in L∞
++(Ω) such that (Fαn,0,0) Mosco-converges

to Fα,0,µ in the L2(Ω)-topology.

We describe the heterogeneous material in section 5.1 while we prove in sections 5.2
and 5.3 the Mosco-convergence of (Fαn,0,0) to Fα,0,µ.
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5.1 Description of the heterogeneous material

The non-local interaction µ is simulated by highly conductive cylinders of axis w. Let us
describe these fibers precisely .

As w ∈ Ω2, there exists q ∈ N such that 2qw ∈ N
N . We use the notations introduced

in section 4. Here n denotes a sequence of integers tending to infinity (of the form n = 2qn

with qn > q) and (rn) is a sequence of reals tending to zero in such a way that

lim
n→∞

n−N | ln rn| = +∞. (5.1)

We denote In the set of indices I ∈ {1, · · ·nN} such that Ωn
I + w ⊂ Ω. Note that, for

such indices, due to our assumptions on w and n, Ωn
I + w is again an elementary cube.

Let us define the radii of our high conductivity fibers by setting, for any I ∈ In,

rn
I := rn

(
1

n
+

‖w‖
|ωN−1|

−
∫

Ωn
I

f(x)dx

) 1
N−1

, (5.2)

and introduce

R :=

(
4 +

‖w‖
|ωN−1|

‖f‖L∞(Ω)

) 1
N−1

. (5.3)

Thus Rrn bounds all radii rn
I .

In order to define the end points of our high conductivity fibers, we introduce a family
of points xn

I in the following way : let ∆n
I be the straight line passing through the point

xn
I and parallel to w, and pn

I (x) the orthogonal projection of x on ∆n
I , we assume that the

family of points xn
I satisfies the three following assumptions

‖xn
I − cn

I ‖ < (4n)−1, (5.4)

if Ωn
I + mw = Ωn

I′ for some m ∈ Z, then xn
I + mw = xn

I′ , (5.5)

d(∆n
I , x

n
I′) > 2Rn−N−1

N−2 , otherwise . (5.6)

These assumptions avoid any collision between the fibers. In order to prove the existence
of such a family, we prove, using an induction argument, that, for any p ∈ {1 · · ·nN}
there exists a family {xn

1 , x
n
2 , · · · , xn

p} which satisfies property Pp :

Pp





∀I ≤ p, ‖xn
I − cn

I ‖ < (4n)−1,

∀I, I ′ ≤ p, if Ωn
I + mw = Ωn

I′ for some m ∈ Z, then xn
I + mw = xn

I′ ,

d(∆n
I , x

n
I′) > 2Rn−N−1

N−2 , otherwise.

When p = 1, it is enough to choose xn
1 = cn

1 . Now, assume that there exist p − 1 points
{xn

1 , x
n
2 , · · · , xn

p−1} which satisfy property Pp−1. If Ωn
I + mw = Ωn

p for some I < p and
some m ∈ Z, it is enough to choose xn

p = xn
I + mw. Otherwise, for each I ≤ p − 1, let

us consider the cylinder of axis ∆n
I and radius 2Rn−N−1

N−2 . It is easy to check that the
number of such cylinders which cut the ball B(cn

p , (4n)−1) is less than CN n and that the
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volume of each intersection is smaller than C ′
Nn−1n−

(N−1)2

N−2 for some constants CN and
C ′

N depending only on the dimension N of the ambient space. Thus, the total volume

of these intersections is smaller than CNC ′
Nn−

(N−1)2

N−2 and then smaller than the volume of
the ball B(cn

p , (4n)−1). Therefore we can choose the point xn
p in this ball and outside of

all the cylinders. Clearly the family {xn
1 , x

n
2 , · · · , xn

p} fulfills properties Pp.
⊓⊔

The high conductivity fibers are the cylinders Cn
I , of radius rn

I , of axis ∆n
I and length

‖w‖ :

Cn
I := { x ∈ Ω | pn

I (x) ∈ [xn
I , xn

I + w] , ‖x − pn
I (x)‖ ≤ rn

I } . (5.7)

As the radii of the cylinders are very small, they are weakly connected with the matrix.
In order to improve this connection (at the extremities only), we add high conductivity
balls

Bn
I := B

(
xn

I , n
−N−1

N−2

)
. (5.8)

Then we define the high conductivity part Ωn of the material (see figure 1) by :

Ωn := (
⋃

I∈In

Cn
I ) ∪ (

⋃

I

Bn
I ). (5.9)

The conductivity coefficient in Ωn is assumed to be constant equal to r
−(N−1)
n n−N .

Hence, the conductivity coefficient of the composite material in consideration is defined
by :

αn(x) :=

{
α(x) + n−1/2 if x ∈ Ω \ Ωn,

r
−(N−1)
n n−N if x ∈ Ωn.

(5.10)

Note that the addition of the term n−1/2 to α in the matrix is needed only for α ≡ 0 and
ensures that αn belongs to L∞

++(Ω).

Figure 1 : Geometry of the composite material.

14



5.2 Lower-bound inequality

Let (un) be a sequence with bounded energy (Fαn,0,0(un) < M) converging to u weakly in
L2(Ω).

Let us first estimate the energy of un in the matrix Ω\Ωn. As
∫

Ωn
r1−N
n n−N |∇un|2 dx < M ,

the quantity
∫

Ωn
α(x) |∇un|2 dx tends to zero. Hence

lim inf
n→∞

∫

Ω\Ωn

αn(x)|∇un|2 dx ≥ lim inf
n→∞

∫

Ω

α(x)|∇un|2 dx ≥ lim inf
n→∞

Fα,0,0(un) . (5.11)

As Fα,0,0 is lower semicontinuous for the weak topology of L2(Ω), we get

lim inf
n→∞

∫

Ω\Ωn

αn(x)|∇un|2 dx ≥ Fα,0,0(u) . (5.12)

Now let us estimate the energy of un in Ωn. For every I ∈ In, we define Dn
I := {x ∈

Cn
I , ‖pn

I (x) − xn
I ‖ ≤ n−N−1

N−2 /2} and D̃n
I := {x ∈ Cn

I , ‖pn
I (x) − xn

Ĩ
‖ ≤ n−N−1

N−2 /2} where Ĩ

denotes the index of point xn
I + w (Ωn

Ĩ
= Ωn

I + w). Thus Dn
Ĩ

and D̃n
I are two extremity

parts of the cylinder Cn
I . In order to estimate the energy of un in Cn

I , let us temporarily
use the “cylindrical” coordinates (x′, xN) with center xn

I and axis w. Recalling that ωN−1

denotes the unit ball of R
N−1, the cylinder Cn

I reads {(x′, xN) ∈ rn
I ωN−1 × [0, ‖w‖]}. For

every 0 < y < z < ‖w‖, we have

∫

Cn
I

|∇un|2 dx =

∫

rn
I

ωN−1

(

∫ ‖w‖

0

|∇un|2 dxN) dx′

≥
∫

rn
I

ωN−1

(

∫ ‖w‖

0

(
∂un

∂xN

)2

dxN) dx′ ≥
∫

rn
I

ωN−1

(

∫ z

y

(
∂un

∂xN

)2

dxN) dx′

≥ 1

z − y

∫

rn
I

ωN−1

(

∫ z

y

∂un

∂xN

dxN)2dx′ ≥ 1

‖w‖

∫

rn
I

ωN−1

(un(x′, z) − un(x′, y))2dx′.

(5.13)

Taking the mean value of this last term for y ∈ [0, 1
2
n−N−1

N−2 ] and z ∈ [‖w‖ − 1
2
n−N−1

N−2 , ‖w‖]
and using Jensen inequality, we get

∫

Cn
I

|∇un|2 dx ≥ 1

‖w‖

∫

rn
I

ωN−1

(−
∫ 1

2
n
−

N−1
N−2

0

(−
∫ ‖w‖

‖w‖− 1
2
n
−

N−1
N−2

(un(x′, z) − un(x′, y))2 dz) dy) dx′

≥ |ωN−1|(rn
I )N−1

‖w‖

(
−
∫

Dn
I

un −−
∫

D̃n
I

un

)2

.

Hence

∫

Ωn

αn(x)|∇un|2 dx ≥ |ωN−1|
‖w‖

1

nN

∑

I∈In

(
rn
I

rn

)N−1
(
−
∫

Dn
I

un −−
∫

D̃n
I

un

)2

. (5.14)
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Noticing that Dn
I are contained in balls Bn

I , Poincaré-Wirtinger inequality applied to the
ball gives

∫

Dn
I

(un −−
∫

Bn
I

un)2 dx ≤
∫

Bn
I

(un −−
∫

Bn
I

un)2 dx ≤ C

n2N−1
N−2

∫

Bn
I

|∇un|2 dx.

As the volume of Dn
I is larger than |ωN−1| 1n(rn)N−1 1

2
n−N−1

N−2 , using Jensen inequality and
summing over I, we obtain
(

1

nN

∑

I∈In

(−
∫

Dn
I

un −−
∫

Bn
I

un)2

)1/2

≤
(

2Cn− 1
N−2

|ωN−1|
∑

I∈In

∫

Bn
I

αn(x)|∇un|2 dx

)1/2

≤
(

2CM

|ωN−1|

)1/2

n− 1
2(N−2) .

(5.15)

In the same way, as D̃n
I ⊂ Bn

Ĩ
⊂ Ωn

I + w, we have

(
1

nN

∑

I∈In

(−
∫

D̃n
I

un −−
∫

Bn

Ĩ

un)2

)1/2

≤
(

2Cn− 1
N−2

|ωN−1|
∑

I∈In

∫

Bn

Ĩ

αn(x)|∇un|2 dx

)1/2

≤
(

2CM

|ωN−1|

)1/2

n− 1
2(N−2) .

(5.16)

Let us denote by Fn
I the set Fn

I := {x ∈ Ω;
1

8n
< ‖x− xn

I ‖ <
1

4n
}, and let us use the

adapted coordinates ρ := ‖x − xn
I ‖2−N , y := ρ

1
N−2 (x − xn

I ) (y is an element of the unit
sphere S of R

N). Let us introduce the measure η on R
+ by :

η(dρ) :=
1

N − 2
ρ−2N−1

N−2 dρ (5.17)

and the mean value with respect to this measure by setting for any Borel set A ⊂ R

=

∫

A

f(s) η(ds) :=
( ∫

A

η(ds)
)−1( ∫

A

f(s) η(ds)
)
. (5.18)

Noting that η(dρ)dy is the volume measure for the considered coordinates, we have
(
−
∫

Bn
I

un −−
∫

Fn
I

un

)2

=

(
−
∫

y∈S

=

∫ ∞

nN−1

un(xn
I + s

1
2−N y) η(ds) dy −−

∫

y∈S

=

∫ (8n)N−2

(4n)N−2

un(xn
I + t

1
2−N y) η(dt) dy

)2

≤ −
∫

y∈S

=

∫ ∞

nN−1

=

∫ (8n)N−2

(4n)N−2

(
un(xn

I + s
1

2−N y) − un(xn
I + t

1
2−N y)

)2

η(dt) η(ds) dy

≤ −
∫

y∈S

=

∫ ∞

nN−1

=

∫ (8n)N−2

(4n)N−2

(∫ s

t

|∇un(xn
I + r

1
2−N y)| 1

2 − N
r

N−1
2−N dr

)2

η(dt) η(ds) dy

≤ −
∫

y∈S

=

∫ ∞

nN−1

=

∫ (8n)N−2

(4n)N−2

(∫ s

t

dr

∫ s

t

|∇un(xn
I + r

1
2−N y)|2η(dr)

)
η(dt) η(ds) dy

≤ 1

N |ωN |

∫

Ωn
I

|∇un(x)|2 dx =

∫ ∞

nN−1

=

∫ (8n)N−2

(4n)N−2

(s − t) η(dt) η(ds)

≤ nN−1

2|ωN |

∫

Ωn
I

|∇un(x)|2 dx .
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Since αn > n−1/2,
∫

Ω
|∇un(x)|2 dx ≤ M

√
n. By summing over I the last inequalities we

obtain

(
1

nN

∑

I∈In

(−
∫

Bn
I

un −−
∫

Fn
I

un)2

)1/2

≤
(

M

2|ωN |
√

n

)1/2

. (5.19)

On the other hand, Poincaré-Wirtinger inequality applied to Ωn
I gives

∫

Fn
I

(un −−
∫

Ωn
I

un)2 dx ≤
∫

Ωn
I

(un −−
∫

Ωn
I

un)2 dx ≤ C ′′

n2

∫

Ωn
I

|∇un|2 dx . (5.20)

As αn > n−1/2, the sum over I of the last inequalities leads to

(
1

nN

∑

I∈In

(−
∫

Fn
I

un −−
∫

Ωn
I

un)2

)1/2

≤
(

C ′′′M

n3/2

)1/2

. (5.21)

Collecting (5.15),(5.16), (5.19) and (5.21), the estimate (5.14) becomes

(∫

Ωn

αn(x)|∇un|2 dx

)1/2

≥


 |ωN−1|

‖w‖
1

nN

∑

I∈In

(
rn
I

rn

)N−1
(
−
∫

Ωn
I

un −−
∫

Ωn

Ĩ

un

)2



1/2

− O(n− 1
4 ) − O(n

−1
2(N−2) ).

(5.22)

Recalling definitions (5.2) of rn
I , and (4.3) of ūn, the last inequality reads

(∫

Ωn

αn(x)|∇un|2 dx

)1/2

≥
(∫

Ω

(ūn(x) − ūn(x + w))2 f(x) dx

)1/2

− O(n− 1
4 ) − O(n

−1
2(N−2) )

≥ (F0,0,µ(ūn))1/2 − O(n− 1
4 ) − O(n

−1
2(N−2) ). (5.23)

As f belongs to L∞(Ω), and as the convergence of (ūn) to u is obtained by a new appli-
cation of Poincaré-Wirtinger inequality, we can pass to the limit in (5.23) and get

lim inf
n→∞

∫

Ωn

αn(x)|∇un|2 dx ≥
∫

Ω

(u(x) − u(x + w))2 f(x) dx. (5.24)

Inequalities (5.12) and (5.24) imply the lower-bound inequality :

lim inf
n→∞

Fαn,0,0(u
n) ≥ Fα,0,µ(u) . (5.25)

⊓⊔

5.3 Upper-bound inequality

Let u ∈ L2(Ω) such that Fα,0,µ(u) < ∞. As C1(Ω) is dense in the domain of Fα,0,µ for

the norm
√

‖u‖2
L2(Ω) + Fα,0,µ(u), it is enough to prove the upper-bound inequality when

u ∈ C1(Ω).
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We construct the approximating sequence (un) in two steps. First we define the
sequence (ũn) by

ũn(x) :=





u(xn
I ), if ‖x − xn

I ‖ ≤ Rn−N−1
N−2 ,

u(x), if ‖x − xn
I ‖ ≥ 2Rn−N−1

N−2 ,

u(x) +
1

2N−2 − 1

(
(2R)N−2

nN−1‖x − xn
I ‖N−2

− 1

)
(u(xn

I ) − u(x)) , otherwise,

(5.26)

where R is the quantity defined by (5.3). It is easy to verify that ũn is continuous on Ω,

constant on the balls B(xn
I , Rn−N−1

N−2 ) (which contain the balls Bn
I ), coincides with u on B

and satisfies ‖ũn‖L∞(Ω) ≤ ‖u‖L∞(Ω). Moreover, since

|u(x) − u(xn
I )| ≤

√
Nn−1‖∇u‖L∞(Ω) ∀x ∈ Ωn

I , (5.27)

the sequence (ũn) converges uniformly to u. Let us denote Gn
I := B(xn

I , 2Rn−N−1
N−2 ) \

B(xn
I , Rn−N−1

N−2 ) the transition layers. A straightforward computation leads to the following
estimation (in which CN is a constant depending only on N) :

nN∑

I=1

∫

Gn
I

|∇ũn(x)|2 dx ≤ CNRNn
−N
N−2‖∇u‖2

L∞(Ω) . (5.28)

As, outside the transition layers Gn
I , the function ũn is either constant, or equal to u, we

obtain, for any sequence of domains Gn the volume of which tends to zero,

lim
n→∞

∫

Gn

|∇ũn(x)|2 dx = 0. (5.29)

The domain where the function ũn does not coincide with u has a volume which tends to
zero. Then the last remark implies that the sequence (ũn) tends to u for the H1(Ω) norm.
Hence

lim sup
n→∞

∫

Ω

(α(x) +
1√
n

)|∇ũn|2 dx =

∫

Ω

α(x)|∇u|2 dx. (5.30)

Now, let us define the non-decreasing continuous interpolation functions fn and gn,
from R to [0, 1], by

fn(s) =
log(s)

| log(n
N−1
N−2 rn)|

∀s ∈ (1, r−1
n n−N−1

N−2 ) and gn(s) =
s − n−N−1

N−2

‖w‖ − 2n−N−1
N−2

∀s ∈ (n−N−1
N−2 , ‖w‖ − n−N−1

N−2 ).

Note that fn(s) = 0 for s ≤ 1, gn(s) = 0 for s ≤ n−N−1
N−2 , fn(s) = 1 for s ≥ r−1

n n−N−1
N−2 and

gn(s) = 1 for s ≥ ‖w‖ − n−N−1
N−2 . In each cylinder (I ∈ In)

An
I :=

{
x ∈ Ω, pn

I (x) ∈ ]xn
I , xn

I + w[ , ‖x − pn
I (x)‖ < Rn−N−1

N−2

}
, (5.31)

18



let us use the adapted “cylindrical” coordinates (r, z) with center xn
I and axis ∆n

I (r := ‖x−
pn

I (x)‖, z := ‖pn
I (x)− xn

I ‖). Let us denote An :=
⋃

I∈In An
I . We define the approximating

sequence (un) by setting for any I in In and any x in An
I

un(x) =fn

(r(x)

rn
I

)
ũn(x)+

(
1−fn

(r(x)

rn
I

))(
(1−gn(z(x))) u(xn

I )+gn(z(x)) u(xn
I +w)

)
(5.32)

and by setting un(x) = ũn(x) in the remaining part Ω\An of Ω. Due to assumption (5.6),
the sets An

I are disjointed and un is well defined by (5.32). For an analogous reason, note
also that

u = 0 on B =⇒ un = 0 on B. (5.33)

It is easy to check that the definitions of R and fn, and the way we defined ũn assure the
continuity of un in the whole domain Ω.

Now let us estimate the energy of un on the different parts of the domain : the
reinforcing set Ωn, the transition zone An\Ωn and the remaining part Ω\An. On each ball
Bn

I , owing to the definition of gn, the functions un are constant. Then, a straightforward
computation gives, for the reinforcing part energy,
∫

Ωn

αn(x)|∇un(x)|2 dx =
∑

I∈In

∫

Cn
I

αn(x)|∇un(x)|2 dx

≤ |ωN−1|r1−N
n n−N‖w‖−1

∑

I∈In

(
(rn

I )N−1
(
u(xn

I )− u(xn
I + w)

)2
)

(1 + O(n−N−1
N−2 )).

(5.34)

Using (5.2), (5.27) and passing to the limit as n tends to infinity, we get

lim sup
n→∞

∫

Ωn

αn(x)|∇un(x)|2 dx ≤ n−N

nN∑

I=1

−
∫

Ωn
I

(
u(x) − u(x + w)

)2

f(x)1Ω(x + w) dx

≤
∫

Ω×Ω

(
u(x) − u(y)

)2

δx+w(y)f(x) dx . (5.35)

On the part Ω \ An, using (5.30), we get

lim sup
n→∞

∫

Ω\An

αn(x)|∇un(x)|2 dx = lim sup
n→∞

∫

Ω\An

(α(x) +
1√
n

)|∇ũn(x)|2 dx

≤
∫

Ω

α(x)|∇u(x)|2 dx . (5.36)

Finally, let us estimate the energy on the set An \Ωn. Noting that |An| tends to zero,
that g′

n is uniformly bounded and using (5.29) we obtain the estimate

lim sup
n→∞

nN∑

I=1

∫

An
I

|∇un(x)|2 dx ≤ 12‖u‖2
L∞(Ω) lim sup

n→∞

nN∑

I=1

(rn
I )−2

∫

An
I

(
f ′

n(
r(x)

rn
I

)
)2

dx

≤ 12‖u‖2
L∞(Ω) lim sup

n→∞

nN∑

I=1

‖w‖ |ωN−1|

(N − 1)
(
log(n

N−1
N−2 rn)

)2

∫ Rn
−

N−1
N−2

rn
I

rN−4 dr .

(5.37)
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Computing the last integral, we get when N > 3,

lim sup
n→∞

∫

An

|∇un(x)|2 dx ≤ lim sup
n→∞

12‖u‖2
L∞(Ω)‖w‖RN−3|ωN−1|nN

(N − 1)(N − 3)
(
log(n

N−1
N−2 rn)

)2n−
(N−1)(N−3)

N−2 = 0,

(5.38)

while, in the particular case N = 3,

lim sup
n→∞

∫

An

|∇un(x)|2 dx ≤ lim sup
n→∞

6πn3‖u‖2
L∞(Ω)‖w‖

(
1
2
log(n) − log(rn)

)

(2 log(n) + log(rn))2 = 0. (5.39)

In these estimations, the assumption (5.1) namely n−N | log(rn)| → ∞ is fundamental.
Note that a weaker assumption would be sufficient in the case N > 3. In any case, we
obtain

lim sup
n→∞

∫

An\Ωn

αn(x)|∇un(x)|2 dx ≤ lim sup
n→∞

(
‖α +

1√
n
‖L∞(Ω)

∫

An\Ωn

|∇un(x)|2 dx

)
= 0.

(5.40)

Collecting the estimates (5.35), (5.36) and (5.40) we obtain

lim sup
n→∞

Fαn,0,0(un) ≤ Fα,0,µ(u). (5.41)

We have noticed that (ũn) converges to u for the H1(Ω) norm, that un coincides with
ũn outside the set An the volume of which tends to zero, and that lim

∫
An |∇un|2 dx = 0

(cf. (5.38)-(5.39)). Therefore the convergence of the sequence (un) to u is assured for the
strong topology of H1(Ω) and then for the strong topology of L2(Ω).

The upper-bound inequality is then proved. This, together with the lower-bound
inequality (5.25), concludes the proof of Theorem 5.

⊓⊔

Remark 11 Theorem 5 remains valid when replacing the Mosco-convergence for the
L2(Ω) topology by the τ -convergence.

Proof : We have to prove that, if u ∈ H1
B(Ω), the approximating sequence (un) we defined

in the last proof converges to u strongly in H1
B(Ω). By a density argument we still can

restrict our attention to the case of a function u ∈ C1(Ω) vanishing on B. We have already
mentioned that the sequence (un) converges to u for the strong topology of H1(Ω). Owing
to (5.33), it converges also for the strong topology of H1

B(Ω).
⊓⊔

6 Extension to atomic interactions

Theorem 5 can easily be extended to a finite sum of elementary interactions. We have :
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Theorem 6 Let µ in A. Then, there exists a sequence (αn) in L∞
++(Ω) such that (Fαn,0,0)

Mosco-converges to F0,0,µ in the L2(Ω) topology.

Proof : Let us prove, by an induction argument with respect to p, that the sum of p
elementary interactions : µ :=

∑p
i=1 δx+wi

(dy)fi(x)1Ω(x + wi) dx belongs to the closure
Dd of Dd.

The case p = 1 is stated by Theorem 5.

Now, for all i ≤ p, let us denote µi := δx+wi
(dy)fi(x)1Ω(x + wi) dx and µ̃ :=

∑p−1
i=1 µi.

Assume that the property holds with p − 1. Then, there exists a sequence (Fβn,0,0) in
Dd which Mosco-converges to F0,0,µ̃ as n tends to infinity. As the functional F0,0,µp is
convex and continuous for the strong topology of L2(Ω), owing to Remark 3, we know
that Fβn,0,µp = Fβn,0,0 + F0,0,µp Mosco-converges to F0,0,µ̃ + F0,0,µp = F0,0,µ. Theorem 5
assures the existence, for any n ∈ N, of a sequence (Fβn,m,0,0) in Dd which Mosco-converges
as m tends to infinity, to Fβn,0,µp . Then, using a diagonalization argument (cf. Remark
5), there exists a sequence in Dd which Mosco-converges to F0,0,µ. ⊓⊔

Remark 12 Theorem 6 remains valid when replacing the Mosco-convergence for the
L2(Ω) topology by the τ -convergence.

Indeed, owing to Remark 11, every argument involved in the last proof remains valid
for the H1

B(Ω) topology.

7 Proof of theorem 2

Let F in D. We construct a sequence (F 0
αn,0,0) in D0 which Mosco-converges to F . Owing

to Theorem 3 and diagonalization remark 5, it is enough to study the case F ∈ Dc. Then
F takes the form F = F0,ν,µ. The point is that the killing term ν is equivalent to a non-
local interaction between Ω and the part B of the boundary submitted to the Dirichlet
condition : indeed, consider the Radon measure µ̃ on Ω × Ω defined by (H2

|B
denoting the

2-D Hausdorff measure on B)

µ̃(dx, dy) := µ(dx, dy) + ν(dx)H2
|B

(dy), (7.1)

and, slightly extending Definition (2.7), denote for any u ∈ L2(Ω) and λ > 0

Fλ,0,µ̃(u) :=





∫

Ω

λ|∇u(x)|2 dx +

∫

Ω×Ω

(u(x) − u(y))2µ̃(dx, dy), if u ∈ H1(Ω),

+∞ otherwise,
(7.2)

It is easy to check that, for any u ∈ L2(Ω),

F0,ν,µ(u) + 2λ F 0
1,0,0(u) = Fλ,0,µ̃(u) + λ F 0

1,0,0(u) (7.3)
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As µ̃ does not charge polar sets, one can verify that Fλ,0,µ̃ is a Dirichlet form. It
belongs to Di and then, owing to Theorem 1 and Remark 8, it is the τ -limit of some
sequence (Fαn,0,0) in Dd. Using Remark 4, we get

F 0
αn+λ,0,0 = Fαn,0,0 + λ F 0

1,0,0

L2−M
−−−−−→Fλ,0,µ̃ + λ F 0

1,0,0 = F0,ν,µ + 2λ F 0
1,0,0. (7.4)

Hence, for any λ > 0, the functional F0,ν,µ + 2λ F 0
1,0,0 belongs to D0. Finally, let us notice

that the sequence ( 1
n

F 0
1,0,0) Mosco-converges to zero in the L2(Ω) topology, and that F0,ν,µ

is convex and continuous for the strong topology of L2(Ω). Then Remark 2.16 implies that
the sequence (F0,ν,µ + 1

n
F 0

1,0,0) Mosco-converges to F0,ν,µ. Proof of Theorem 2 is completed
using the diagonalization procedure stated in Remark 5. ⊓⊔
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