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Abstract

It is a very well known fact that the effective properties of a hetero-
geneous electrical medium may contain a non-local term. The same
phenomenon can occur within a heterogeneous thermally conducting
medium. We are interested in the set of all non-local interactions which
may arise from the homogenization of a thermoelectric medium where
there are couplings between the temperature and the electric field. We
consider a bounded open subset Ω ⊂ R3 and we show that any non-local
energy of the kind

F (u, v) =
∫

Ω×Ω

(
u(x)− u(y)
v(x)− v(y)

)
· µ(dx, dy)

(
u(x)− u(y)
v(x)− v(y)

)
,

belongs to the closure of the set of thermoelectric functionals, provided
that the positive definite symmetric matrix-valued measure µ(dx, dy)
makes this energy functional continuous in the strong topology of L2(Ω, R2).

Key words: Homogenization, Gamma-convergence, Mosco-convergence,
Composite Materials, Thermoelectricity, Non-local Phenomena.

1 Introduction
In mathematics as well as in physics, it is of great interest to have a complete
description of the set of all limits of sequences of the type

Jn(u) :=

∫
Ω

wn(x,∇u(x)) dx, (1.1)

where wn(x, ·) is a non-negative quadratic form on the space R3 (resp. on the
space of 3 × 3 matrices) in the electric or thermal setting (resp. in the linear
elasticity setting). In order to place this paper in context, let us review a few
of the previous works on asymptotic studies of problems of the type (1.1).

In the case of isotropic dielectric materials the energy density wn takes the
particular form

wn(x,∇u(x)) = an(x)|∇u(x)|2, (1.2)

∗The corresponding author.
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where the coefficient an ∈ L∞(Ω, R+) and an
−1 ∈ L∞(Ω, R+). It is very well

known [33] that if the coefficients an and their inverses an
−1 are uniformly

bounded then the limit functional Jhom still takes the same form

Jhom(u) =

∫
Ω

∇u(x) ·Ahom(x)∇u(x) dx . (1.3)

Here the homogenized matrix Ahom(x) may be anisotropic, i.e., it is not nec-
essarily proportional to the identity tensor (higher order gradient terms do
make appearance, but only in the corrector terms to the homogenized func-
tional [3, 30]). The homogenization result (1.3) still holds true under weaker
assumptions. Indeed, Buttazzo & Dal Maso [10] and Carbone & Sbor-
done [15] have proved that the assumptions of uniform boundedness of the
sequences (an) and (an

−1) can be replaced by that of equi-integrability and
uniform boundedness of (an) in L1(Ω). However, outside these two situations
the limit functional may dramatically differ from the initial ones. During the
last twenty years, many authors carried out diverse asymptotic analyses of
functionals of the type (1.1)-(1.2). It appeared that, despite the strong local
nature of (1.1)-(1.2), non-classical behaviors such as killing terms [28] and non-
local terms [1, 4, 6, 14, 27] may arise in the limit problem. The first relevant
examples of such non-classical phenomena were obtained by Fenchenko &
Khruslov [21] and Khruslov [23]. Using the Deny-Beurling [5, 22] represen-
tation of regular Dirichlet forms Mosco [27] derived a general representation
for the limit of sequences of the type (1.1)-(1.2). Non-local behaviors were
also obtained by Bellieud & Bouchitté [4] in the framework of nonlinear
functionals. Proceeding further Briane [7] found a condition on the sequence
which if satisfied ensures classical behavior and if not then there can appear
non-local phenomena. Additionally he established the optimality of this con-
dition in the case of fiber-reinforced media. A subsequent work Briane [9]
extended the results of [4] and [21] introducing a new approach for the ho-
mogenization of periodic media reinforced by aligned high-conductivity fibers.
This approach is based on the asymptotic behavior of an auxiliary local spec-
tral problem which measures the non-locality occurring within the reinforced
media.

It is clear from these works that high or low conductivity fibers are a
good tool for creating non-local phenomena. Recently Cherednichenko,
Smyshlyaev and Zhikov [16] obtained convolution-type spatial non-local
effects from the homogenization of non-uniformly elliptic operators. Using a
combination of the two-scale convergence method ([1], [34]) and the classical
double-scale asymptotic expansion method, they showed that for arrays of
cylinders with the cylinders having very poor conductivity in the transverse
direction the macroscopic current and electric fields are linked by a constitutive
law which is non-local in the direction parallel to the cylinders axes (see also
the earlier papers of Sandrakov [31, 32]).

Using a construction based on high conductivity fibers Camar-Eddine &
Seppecher [13] gave a complete characterization of the closure of the set of
functionals of the type (1.1)-(1.2). Their result states that any Dirichlet form
on L2(Ω) is the Mosco-limit of some sequence of diffusion functionals.

Unusual behaviors such as non-local effects have also been observed [4],
[19, 20] in the linear elasticity setting. Pideri & Seppecher [29] gave an
example in which the limit of a sequence of isotropic elastic energies

Fn(u) =

∫
Ω

(
αn(x)‖e(u)‖2 + βn(x)(Tr(e(u)))2

)
dx, (1.4)
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includes some second derivatives of the displacement u. In (1.4), αn and βn are
the Lamé coefficients of the material, e(u) represents the strain tensor i.e.,
the symmetric part of the gradient of u, ‖e(u)‖ denotes the Euclidean norm
of the matrix e(u) and Tr(e(u)) its trace.

In a recent paper [12] Camar-Eddine and Seppecher completely charac-
terized the set of all possible limits of sequences of the type (1.4). They proved
that this set coincides with that of all non-negative lower-semicontinuous quadratic
functionals which are objective in the sense that they vanish for rigid motions.
Another setting where non-local effects have been observed is that of Stokes
equations. Briane [8] obtained a non-local Brinkman’s law from the homoge-
nization of the Stokes equations in a vertical open cylinder with high-contrast
viscosity.

Our ultimate goal, using similar approach, is to determine the closure of
the set of isotropic thermoelectric functionals involving couplings between the
temperature and the electric field:∫

Ω

(
σ(x)|∇u(x)|2 + κ(x)|∇v(x)|2 + 2α(x)∇u(x) · ∇v(x)

)
dx

=

∫
Ω

(
∇u(x)
∇v(x)

)
·L(x)

(
∇u(x)
∇v(x)

)
, (1.5)

where σ, κ and α are the elements of the positive definite symmetric thermo-
electric matrix

L(x) =

(
σ(x) α(x)
α(x) κ(x)

)
(1.6)

of the material occupying the domain Ω. The positive definiteness of L(x) is
equivalent to the condition that

σ(x) > 0, κ(x) > 0 and σ(x)κ(x)− α2(x) > 0 a.e. in Ω. (1.7)

For the physical interpretation of these coefficients and the potentials u and
v, see for example Callen [11] or section 2.4 of Milton [25].

This paper is a modest first step in that direction. We show that a large
class of non-local energies of the type∫

Ω×Ω

(
u(x)− u(y)
v(x)− v(y)

)
· µ(dx, dy)

(
u(x)− u(y)
v(x)− v(y)

)
(1.8)

can be obtained as limits of sequences of functionals of the type (1.5) where
µ(dx, dy) is a positive definite symmetric matrix-valued measure satisfying
certain conditions which ensure the continuity of the functional (1.8) in the
strong topology of L2(Ω, R2). The foundation of our argument is provided by
the work of Camar-Eddine and Seppecher [13].

The structure of the paper is the following: In Section 2 we set up our
notations and state our main result. Section 3 introduces some preliminary
results (Theorem 2 and Theorem 3) which we use later. Aside from some
algebraic lemmas, we will draw upon the method developed in [13] generaliz-
ing the key ideas of that approach to some particular functionals depending
on two potentials. Note that although the present paper deals with energy
functionals acting on two potentials, our result is easily generalized to energies
depending on more than two potentials. Moreover, since the results of [13]
are proved when the dimension of the physical space is greater than or equal
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to three, so is our result. As a matter of fact, the topology of R2 seemingly
does not allow the construction of a structure connecting two distant points
without significantly perturbing the conduction in the remaining part of the
medium. To our knowledge the question of the characterization of the closure
of conductivity functionals when the dimension of the ambient space is two is
still open.

The last section (Section 4) is devoted to the proof of the main result
(Theorem 1).

2 Main result

2.1 Notations and definitions

The domain Ω is a bounded open subset of R3. For the sake of simplic-
ity Ω is assumed to be the unit cube (0, 1)3 of R3. The Lebesgue space
L2(Ω, R2) is endowed with the norm ‖u‖L2(Ω) := (

∫
Ω
|u(x)|2 dx)1/2. We de-

note by H1(Ω, R2) the usual Sobolev space, endowed with its standard norm
‖u‖H1(Ω,R2) := (

∫
Ω
|u(x)|2 dx+

∫
Ω
|∇u(x)|2 dx)1/2. We will also denote by L∞(Ω)

the set of all essentially bounded Lebesgue measurable functions endowed with
the usual norm ‖u‖L∞(Ω) := inf{λ ; |u(x)| ≤ λ for a.e. x in Ω} and by L∞++(Ω)
the subset

L∞++(Ω) := {ϕ ∈ L∞(Ω, R+), ϕ−1 ∈ L∞(Ω, R+)}.
This space is nothing but the set of all non-degenerate thermal and electrical
conductivities.
By |O| we denote the Lebesgue measure of any Borel subset O ⊂ ⊗ and by
−
∫
O u := 1

|O|

∫
O u dx we denote the mean value of any function u ∈ L1(O).

Let µ11(dx, dy), µ12(dx, dy) and µ22(dx, dy) be three Radon measures on Ω×Ω.
With the symmetric matrix-valued measure

µ(dx, dy) =

µ11(dx, dy) µ12(dx, dy)

µ12(dx, dy) µ22(dx, dy)

 (2.1)

we associate the quadratic non-local energy functional Jµ defined, for any
(u, v) ∈ L2(Ω, R2), by

Jµ(u, v) :=

∫
Ω×Ω

(
u(x)− u(y)
v(x)− v(y)

)
· µ(dx, dy)

(
u(x)− u(y)
v(x)− v(y)

)
. (2.2)

Note that in (2.2), the part of the measure µ(dx, dy) supported by the diagonal
∆ := {(x, x), x ∈ Ω} does not play any role. We then assume, without loss
of generality, that the measures µ11(dx, dy), µ12(dx, dy), µ22(dx, dy) do not
charge the diagonal ∆, i.e., they do not give any weight to the diagonal:

µ11(∆) = µ12(∆) = µ22(∆) = 0. (2.3)

Note also that only the set-symmetric part (µkl)sym(dx, dy) of the measure
µkl(dx, dy), defined for any Borel sets A ⊂ Ω and B ⊂ Ω, by

(µkl)sym(A×B) =
1

2

(
µkl(A×B) + µkl(B × A)

)
(2.4)
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plays a role in (2.2). This allows us to assume, without loss of generality, that
the measures µkl(dx, dy), k, l = 1, 2, are set-symmetric in the sense that for
any Borel sets A ⊂ Ω and B ⊂ Ω one has:

µkl(A×B) = µkl(B × A). (2.5)

2.2 Thermoelectric functionals
We denote by M the set of isotropic thermoelectric functionals with bounded
coefficients σ(x), κ(x) and α(x) satisfying (1.7). Specifically we set

M := {Jσ,κ,α ; (σ, κ, σκ− α2) ∈
(
L∞++(Ω)

)3}, (2.6)

where

Jσ,κ,α(u, v) :=



∫
Ω

(
σ(x)|∇u(x)|2 + κ(x)|∇v(x)|2+

+2α(x)∇u(x) · ∇v(x)
)
dx if (u, v) ∈ H1(Ω, R2),

+∞ otherwise.

(2.7)

Note that there is no uniform bound for σ, κ and α in the Definition (2.6) of
M. That means: very low or very high coefficients are admissible. It should
also be noted that the coupling coefficient α is not necessarily positive. Strictly
speaking the functional Jσ,κ,α defined by (2.7) is not the physical energy, but
we will refer to it as the energy because it is the energy in the mathematically
equivalent magnetoelectric problem (see for instance Milton [25]).

A useful property of the set M is its stability under the composition on
the right with non-singular linear operators of L2(Ω, R2). Indeed we have the
following:

Property 1 Let Jσ,κ,α be an element of M. Let P be a 2 × 2 real and non-
singular matrix. Then the composite functional Jσ,κ,α◦P defined, for any (u, v)
in L2(Ω, R2), by

(Jσ,κ,α ◦ P )(u, v) := Jσ,κ,α(P (u, v)) (2.8)

belongs to M.

Proof: Let p11, p12, p21 and p22 be the elements of the matrix P . For any
(u, v) in L2(Ω, R2) we have

(Jσ,κ,α ◦ P )(u, v) = Jσ,κ,α(p11u + p12v, p21u + p22v)

=: Jeσ,eκ,eα(u, v),

where

σ̃ := p2
11σ + p2

21κ + 2p11p21α, κ̃ := p2
12σ + p2

22κ + 2p12p22α

and
α̃ := p11p12σ + p21p22κ + (p11p22 + p12p21)α.
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An elementary computation shows that

σ̃ = σ

[(
p11 +

α

σ
p21

)2

+
(p21

σ

)2

(σκ− α2)

]
,

κ̃ = σ

[(
p12 +

α

σ
p22

)2

+
(p22

σ

)2

(σκ− α2)

]

and that
σ̃κ̃− α̃2 = [det(P )]2(σκ− α2),

where det(P ) stands for the determinant of the matrix P . It follows from the
positivity of (σκ− α2) and from the non-singularity of the matrix P that

σ̃(x) > 0, κ̃(x) > 0 and σ̃(x)κ̃(x)− α̃(x)2 > 0 a.e. in Ω.

Therefore the triplet (σ̃, κ̃, σ̃κ̃− α̃2) belongs to
(
L∞++(Ω)

)3
which implies that

the functional Jeσ,eκ,eα belongs to M. Property 1 is then proved. ut

2.3 Convergence of functionals

All the functionals considered in this paper are defined on the Lebesgue space
L2(Ω, R2). They are proper, convex and lower-semicontinuous in L2(Ω, R2).
We denote by Q this set of functionals. The notion of convergence we use is
a variational convergence particularly adapted to our problem. We recall its
definition and main properties. For more details on this convergence, we refer
to [12, 13] and the references therein.

Definition 1 We say that a sequence of functionals (Fn) in Q τ -converges to

a functional F , and we write Fn
τ−→F , if and only if it satisfies the following

three properties:
i) Lower-bound inequality: For any sequence (un, vn) converging weakly to some
(u, v) in L2(Ω, R2),

lim inf
n→∞

Fn(un, vn) ≥ F (u, v) . (2.9)

ii) First upper-bound inequality: For every (u, v) in L2(Ω, R2), there exists an
approximating sequence (un, vn) converging to (u, v) strongly in L2(Ω, R2) such
that

lim sup
n→∞

Fn(un, vn) ≤ F (u, v) . (2.10)

iii) Second upper-bound inequality: For any (u, v) in H1(Ω, R2), there exists a
sequence (un, vn) converging to (u, v) in the strong topology of H1(Ω, R2) such
that

lim sup
n→∞

Fn(un, vn) ≤ F (u, v) . (2.11)

Remark 1 Any result that a subset is τ -dense implies the density of that
subset for Mosco-convergence in L2(Ω, R2) and for Γ-convergence in the strong
topology of L2(Ω, R2).

The notion of τ -convergence is closely related to that of Γ-convergence intro-
duced by De Giorgi [18], [17] which is adapted to study the limit of variational
problems and to the notion of Mosco-convergence introduced by U. Mosco [26],
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[2] which is more particularly adapted to convex cases. Remark 1 is due to the
fact that, the stronger is the notion of convergence, the stronger is a density
result.
It is usual to shorten proofs by considering only sequences with bounded en-
ergy. Indeed:

Remark 2 It is clear that a τ -convergence result is proved if for every subse-
quence (not relabeled) of (Fn) one considers in (i) only sequences (un, vn) with
bounded “energy” ( i.e., such that Fn(un, vn) < M < +∞) and in (ii) and (iii)
only elements (u, v) such that F (u, v) < +∞. In the same way it is usual to
shorten the proofs of convergence by considering only sufficiently smooth func-
tions u and v in points (ii) and (iii) of Definition 1: if F is continuous in the
strong topology of L2(Ω, R2), both points (ii) and (iii) of Definition 1 will be
proved once proved that

iv) for any (u, v) in C∞(Ω, R2), there exists a sequence (un, vn) converging to
(u, v) in the strong topology of H1(Ω, R2) such that

lim sup
n→∞

Fn(un, vn) ≤ F (u, v) . (2.12)

The next key property will bring to the fore the fact that τ -convergence is
stable when adding elements of a wide class of perturbations.

Property 2 Let us denote by R the set of all functionals in Q which are
either continuous in the strong topology of L2(Ω, R2), or continuous in the
strong topology of H1(Ω, R2) with domain contained in H1(Ω, R2). We have(

Fn
τ−→F and G ∈ R

)
⇒ Fn + G

τ−→F + G. (2.13)

Proof: Let (un, vn) be a sequence weakly converging to some (u, v) in L2(Ω, R3).
As G ∈ Q is lower-semicontinuous in the weak topology of L2(Ω, R2), the τ -
convergence of (Fn) to F implies the lower-bound inequality:

lim inf
n→∞

(Fn+G)(un, vn) ≥ lim inf
n→∞

Fn(un, vn)+lim inf
n→∞

G(un, vn) ≥ F (u, v)+G(u, v),

and point (i) of Definition 1 is proved. Now, let (u, v) ∈ H1(Ω, R2). The τ -
convergence of (Fn) to F assures the existence of a sequence (un, vn) converging
strongly to (u, v) in H1(Ω, R2) and satisfying

lim sup
n→∞

Fn(un, vn) ≤ F (u, v) . (2.14)

As G, in any case, is continuous in the strong topology of H1(Ω, R2), we have
also

lim sup
n→∞

(Fn + G)(un, vn) ≤ (F + G)(u, v) (2.15)

and point (iii) is proved. Clearly, this proves also point (ii) when the domain
of G is contained in H1(Ω, R2). In the other case, G is continuous in the strong
topology of L2(Ω, R2). The τ -convergence of (Fn) to F states the existence of
a sequence (un, vn) which converges strongly to (u, v) in L2(Ω, R2) and satisfies
the upper-bound (2.14). Due to the continuity of G, inequality (2.15) is satis-
fied and therefore point (ii) still holds. This completes the proof of Property
2. ut
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Definition 2 Let U be a subset of Q. We call U the closure of U and we
define it to be the set of all τ -limits of sequences in U .

The next key property is essential in our proofs.

Property 3 For any subset U of Q, we have U = U .

The point here is that, like Mosco-convergence and unlike Γ-convergence, the
τ -convergence is metrizable at least on a large part of Q, namely on the set of
all functionals in Q whose domain intersects H1(Ω, R2).

Property 4 Let U be a convex cone contained in R. Let F and G be in U
and assume that F belongs to R. Then F + G belongs to U .

Proof: Let (Fn) and (Gn) be two sequences in U which τ -converge respectively
to F and G. Then Property 2 states that F + Gn τ -converges to F + G and
that, for any fixed n, Fm + Gn τ -converges to F + Gn as m goes to infinity.

We conclude that F + G belongs to U by invoking Property 3.

One consequence of Property 4 is that the closure M is stable under addi-
tion.

In the proof of Theorem 2, we consider the notion of τ -convergence for a
sequence of functionals defined on L2(Ω). We say that a sequence of functionals
Sn : L2(Ω) → [0,∞] τ -converges to S : L2(Ω) → [0,∞] in L2(Ω) if and only
if the three properties of Definition 1 are satisfied when the Lebesgue space
L2(Ω, R2) is replaced by L2(Ω) and the Sobolev space H1(Ω, R2) is replaced by
H1(Ω).

2.4 Statement of the main result
Our main result states that any continuous non-local energy functional of the
type (2.2) is the τ -limit of some sequence of thermoelectric energies. Specifi-
cally we have the following:

Theorem 1 Let µ(dx, dy) be a positive definite symmetric matrix-valued mea-
sure such that the corresponding non-local energy functional Jµ defined by (2.2)
is continuous in the strong topology of L2(Ω, R2). Then Jµ belongs to the τ -

closure M of the set of isotropic thermoelectric functionals.

The proof of Theorem 1 is based on three intermediate results we are going to
state and prove in the next section.

The first result (Theorem 2) states that for any matrix-valued measure

µ(dx, dy) := Aν(dx, dy) =

(
A11 A12

A12 A22

)
ν(dx, dy) (2.16)

where the constant and symmetric matrix A is positive definite and where
ν(dx, dy) is a Radon measure on Ω× Ω whose projection ν(dx, Ω) on Ω, does
not charge polar sets (which are defined as sets with vanishing H1-capacity
[24]), the corresponding functional Jµ given by (2.2) belongs to the τ -closure

M of the set of isotropic thermoelectric functionals.

The second result (Remark 3) states that any finite sum of measures of the
kind (2.16) is realizable in the sense that it belongs to M. This follows from
Property 4 and the fact that M is a convex cone contained in R.
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The third result (Theorem 3) is a discretization result: it states that if
µ(dx, dy) is a positive definite symmetric matrix-valued measure of the type
(2.1) on Ω×Ω which makes the corresponding energy functional Jµ continuous
in the strong topology of L2(Ω, R2), then Jµ is the τ -limit of a sequence of
functionals associated to a sequence of finite sums of measures of the type
(2.16). This result is obtained by a discretization procedure introduced in
[13].

3 Preliminary results

We begin by proving the result of Theorem 1 for a particular family of measures
µ(dx, dy); namely for those measures with elements all proportional to the
same measure ν(dx, dy).

Theorem 2 Let µ(dx, dy) be as in the paragraph containing (2.16). Then,
the corresponding non-local energy functional Jµ given by (2.2) belongs to the

τ -closure M of the set of isotropic thermoelectric functionals.

Before proceeding to the proof of Theorem 2 let us establish two lemmas we
use in the proof.

3.1 Two useful lemmas

Lemma 1 Let Fn and Gn : L2(Ω)−→ [0, +∞] be two sequences τ -converging,
in L2(Ω), to F and G, respectively. Then, the sequence of functionals Jn(u, v) :=
Fn(u) + Gn(v) τ -converges to the functional J(u, v) := F (u) + G(v).

Proof of Lemma 1: The point here is that the functionals Fn and Gn act on
two independent variables u and v. The result is proved by two inequalities.

Lower-bound inequality: Let (un, vn) be a sequence converging to some (u, v)
weakly in L2(Ω, R2) with bounded energy i.e., such that Jn(un, vn) ≤ M < ∞.
Then, the τ -convergence in L2(Ω) of Fn and Gn to F and G, respectively, leads
to

lim inf
n→∞

Jn(un, vn) = lim inf
n→∞

(Fn(un) + Gn(vn))

≥ lim inf
n→∞

Fn(un) + lim inf
n→∞

Gn(vn)

≥ F (u) + G(v)

= J(u, v). (3.1)

Upper-bound inequality: Let (u, v) ∈ L2(Ω, R2) such that J(u, v) < ∞. Again,
the τ -convergence in L2(Ω) of Fn and Gn to F and G, respectively, assures the
existence of two independent approximating sequences (un) and (vn) strongly
converging in L2(Ω) to u and v, respectively, such that lim sup Fn(un) ≤ F (u)
and lim sup Gn(vn) ≤ G(v). It follows that the sequence (un, vn) converges to
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(u, v) strongly in L2(Ω, R2) and satisfies

lim sup
n→∞

Jn(un, vn) = lim sup
n→∞

(Fn(un) + Gn(vn))

≤ lim sup
n→∞

Fn(un) + lim sup
n→∞

Gn(vn)

≤ F (u) + G(v)

= J(u, v). (3.2)

Lemma 1 is then proved. ut

Lemma 2 Let P be a 2× 2 real non-singular matrix. Let (Jn) be a sequence

τ -converging to some J . Then the sequence (J̃n), defined on L2(Ω, R2) by

J̃n(u, v) := Jn(P (u, v)), τ -converges to J̃ , defined on L2(Ω, R2) by J̃(u, v) :=
J(P (u, v)).

The proof of Lemma 2 is straightforward. Indeed, let (un, vn) be a sequence

weakly converging in L2(Ω, R2) to some (u, v) such that J̃n(un, vn) ≤ M <
∞. By linearity the sequence

(
P (un, vn)

)
converges weakly in L2(Ω, R2) to(

P (u, v)
)
. From the τ -convergence of (Jn) to J it follows that

lim inf
n→∞

J̃n(un, vn) = lim inf
n→∞

Jn(P (un, vn)) ≥ J(P (u, v)) = J̃(u, v). (3.3)

Now let (u, v) ∈ L2(Ω, R2) such that J̃(u, v) < ∞. By the τ -convergence of
(Jn) to J , there exists an approximating sequence (ξn, ηn) strongly converging
to P (u, v) in L2(Ω, R2) such that

lim sup
n→∞

Jn(ξn, ηn) ≤ J(P (u, v)). (3.4)

Taking (3.4) into account and setting (un, vn) := P−1(ξn, ηn) (where P−1

stands for the inverse matrix of P ) provides us with a sequence (un, vn) con-
verging to (u, v) strongly in L2(Ω, R2), and satisfying

lim sup
n→∞

J̃n(un, vn) = lim sup
n→∞

Jn(P (un, vn))

= lim sup
n→∞

Jn(ξn, ηn)

≤J(P (u, v)) = J̃(u, v). (3.5)

Inequality (3.5) together with (3.3) proves the τ -convergence of (J̃n) to J̃ . This
concludes the proof of Lemma 2. ut

Now that the two lemmas are proved, let us proceed with the proof of
Theorem 2.

3.2 Proof of Theorem 2
The eigenvalues λ1 and λ2 of the positive definite symmetric matrix

A =

(
A11 A12

A12 A22

)

10



are positive. Let a and b be the two eigenvectors of A having norms,
√

λ1 and√
λ2, respectively. Then, the matrix A takes the form A = a⊗a+b⊗b. The

associated energy

Jµ(u, v) =

∫
Ω×Ω

(
u(x)− u(y)
v(x)− v(y)

)
· µ(dx, dy)

(
u(x)− u(y)
v(x)− v(y)

)
(3.6)

can be written in the form

Jµ(u, v) = F (P (u, v)),

with

P =

(
a1 a2

b1 b2

)
and

F (u, v) =

∫
Ω×Ω

(u(x)− u(y))2ν(dx, dy) +

∫
Ω×Ω

(v(x)− v(y))2ν(dx, dy)

=: S(u) + Q(v) for any (u, v) ∈ L2(Ω, R2). (3.7)

Therefore, owing to Lemma 2 and Property 1, it is sufficient to prove that the
functional F , defined on L2(Ω, R2) by (3.7), belongs to the closure M of the
set of thermoelectric functionals. On the other hand, by Theorem 1 of [13],
there are two sequences (Sn) and (Qn) defined on L2(Ω) by

Sn(u) :=


∫

Ω

σn(x)|∇u(x)|2 dx if u ∈ H1(Ω)

+∞ otherwise,

(3.8)

and

Qn(v) :=


∫

Ω

κn(x)|∇v(x)|2 dx if v ∈ H1(Ω)

+∞ otherwise,

(3.9)

where σn ∈ L∞++(Ω) and κn ∈ L∞++(Ω), such that (Sn) τ -converges in L2(Ω)
to S and (Qn) to Q. Lemma 1 states that the sequence (Jσn,κn,0) defined on
L2(Ω, R2) by

Jσn,κn,0(u, v) := Sn(u) + Qn(v),

τ -converges to F (u, v) = S(u) + Q(v). Therefore the functional F belongs to
M. We conclude the proof of Theorem 2 by invoking Lemma 2 and Property
1.

ut

Since M is a convex cone contained in R, owing to Property 4 we have the
following:

Remark 3 Any finite sum of measures of the kind (2.16) is realizable, in the
sense that the associated functional belongs to the τ -closure M of the set of
isotropic thermoelectric functionals.

11



3.3 Discretization of a non-local functional
The next result (Theorem 3) is a discretization result. We use the concept of
atomic interaction introduced in [13] to prove that a wide class of non-local
energy functionals of the type Jµ defined by (2.2) belongs to the τ -closure M
of the set of isotropic thermoelectric functionals. By elementary interaction
we mean any element of the set

E := {δx+w(dy)f(x)1Ω(x + w)dx, w ∈ Ω2, f ∈ L∞(Ω), f ≥ 0} , (3.10)

where 1Ω is the characteristic function of the set Ω, and Ω2 represents the set of
vectors in R3 with dyadic components Ω2 := {w ∈ R3, ∃p ∈ N : 2pw ∈ N3}.
This restriction to vectors with dyadic components is purely technical. By
atomic interaction we mean any finite combination of elementary interactions.
We denote the set of such measures by

A :=

{
n∑

i=1

δx+wi
(dy)fi(x)1Ω(x + wi) dx, n ∈ N, wi ∈ Ω2, fi ∈ L∞(Ω), fi ≥ 0

}
.

The sets E and A provide examples of scalar measures ν(dx, dy) whose projec-
tions ν(dx, Ω) on Ω are absolutely continuous with respect to dx. Therefore,
any functional of the kind

∫
Ω×Ω

(u(x) − u(y))2ν(dx, dy) associated with any

measure ν(dx, dy) in E or A is strongly continuous in L2(Ω, R2) (see for in-
stance Section 2.2 of the reference [13]).

Let µ(dx, dy) be a symmetric matrix-valued measure of the type (2.1)
whose projection µ(dx, Ω) on Ω is absolutely continuous with respect to the
Lebesgue measure dx in the sense that all its components µ11(dx, dy), µ12(dx, dy)
and µ22(dx, dy) have projections µ11(dx, Ω), µ12(dx, Ω) and µ22(dx, Ω) which
are absolutely continuous with respect to dx. Note that the absolute continu-
ity of µ(dx, Ω) with respect to dx is equivalent to the continuity, in the strong
topology of L2(Ω, R2), of the associated functional Jµ defined by (2.2) (see for
instance [13]). With this measure µ(dx, dy) we associate a sequence (µn) of
measures as follows: Let n denote a sequence of integers tending to infinity of
the form n = 2qn (with qn ∈ N). We divide the domain Ω in n3 elementary
cubes

Ωn
I :=

(
i− 1

n
,
i

n

)
×
(

j − 1

n
,
j

n

)
×
(

k − 1

n
,
k

n

)
, (3.11)

with centers cn
I where I := (i, j, k) belongs to {1, · · · , n}3 which we identify

with {1, . . . , n3}. For any component µij(dx, dy) of µ(dx, dy), we define the
sequence of components (µij

n ) by

µij
n (dx, dy) :=

n3∑
I=1

n3∑
I′=1

(an
II′)

ij1Ωn
I
(x) δx+wn

II′
(dy)1Ω(x + wn

II′) dx (3.12)

where the weight (an
II′)

ij := n3µij(Ωn
I ×Ωn

I′) normalizes the measure µij(dx, dy)
and where the vector wn

II′ is defined by wn
II′ := cn

I′ − cn
I . For any n ≥ 1 we

define on L2(Ω, R2) the functional

Jµn(u, v) =

∫
Ω×Ω

(
u(x)− u(y)
v(x)− v(y)

)
· µn(dx, dy)

(
u(x)− u(y)
v(x)− v(y)

)
. (3.13)

The aim of this section is to prove the following:

12



Theorem 3 The sequence of functionals (Jµn) defined by (3.12)-(3.13) τ -
converges to Jµ.

Proof: The result is proved by two inequalities.

Lower-bound inequality: Let (un, vn) be a sequence with bounded energy weakly
converging to some (u, v) in L2(Ω, R2). With (un, vn) we associate a new se-
quence (ūn, v̄n) in L2(Ω, R2) as follows: For any n ≥ 1 we define the piecewise
constant functions ūn and v̄n by

ūn(x) :=
n3∑

I=1

(
−
∫

Ωn
I

un

)
1Ωn

I
(x) and v̄n(x) :=

n3∑
I=1

(
−
∫

Ωn
I

vn

)
1Ωn

I
(x). (3.14)

It is easy to verify that the sequence (ūn, v̄n) weakly converges in L2(Ω, R2) to
(u, v). Taking into account the definitions (3.12) and (3.14) we have

Jµn(un, vn) =
n3∑

I=1

n3∑
I′=1

n3|Ωn
I | −
∫

Ωn
I

(
µ11(Ωn

I × Ωn
I′) [un(x)− un(x + wn

II′)]
2

+ 2µ12(Ωn
I × Ωn

I′)
(
un(x)− un(x + wn

II′)
)
·
(
vn(x)− vn(x + wn

II′)
)

+ µ22(Ωn
I × Ωn

I′) [vn(x)− vn(x + wn
II′)]

2
)

dx .

Moreover, for any n ≥ 1 and any pair (I, I ′) ∈ {1, · · · , n3}2 the function f
defined on R2 by

f(r, s) ≡
(

r
s

)
·

µ11(Ωn
I × Ωn

I′) µ12(Ωn
I × Ωn

I′)

µ12(Ωn
I × Ωn

I′) µ22(Ωn
I × Ωn

I′)

(r
s

)
, (3.15)

where a · b denotes the usual scalar product of two vectors a and b in R2, is
quadratic and positive, therefore convex. Then, due to Jensen’s inequality we
have

Jµn(un, vn) ≥
n3∑

I=1

n3∑
I′=1

n3|Ωn
I |
{

µ11(Ωn
I × Ωn

I′)

(
−
∫

Ωn
I

un(x) dx−−
∫

Ωn
I

un(x + wn
II′) dx

)2

+ µ22(Ωn
I × Ωn

I′)

(
−
∫

Ωn
I

vn(x) dx−−
∫

Ωn
I

vn(x + wn
II′) dx

)2

+ 2µ12(Ωn
I × Ωn

I′)

(
−
∫

Ωn
I

un(x) dx−−
∫

Ωn
I

un(x + wn
II′) dx

)

×

(
−
∫

Ωn
I

un(x) dx−−
∫

Ωn
I

un(x + wn
II′) dx

)}
≥ Jµn(ūn, v̄n).

As the measures µij(dx, Ω) are all absolutely continuous with respect to the
Lebesgue measure dx, they do not charge any two-dimensional manifold of R3;
in particular, they do not give any weight to the sets ∂Ωn

I (i.e., the boundaries
of the elementary cubes Ωn

I ). It follows that

13



Jµn(ūn, v̄n) = Jµ(ūn, v̄n).

Moreover the functional Jµ is strongly continuous in L2(Ω, R2). It is then
strongly lower-semicontinuous in L2(Ω, R2) and therefore weakly lower - semi-
continuous in L2(Ω, R2) since convex. Using the fact that the sequence (ūn, v̄n)
weakly converges to (u, v) in L2(Ω, R2), we get

lim inf
n→∞

Jµn(un, vn) ≥ lim inf
n→∞

Jµ(ūn, v̄n) ≥ J(u, v). (3.16)

Inequality (3.16) yields the lower-bound inequality.

Upper-bound inequality: Let (u, v) ∈ L2(Ω, R2) such that Jµ(u, v) < ∞. By a
density argument we can assume that u and v belong to C1

0(Ω). With (u, v)
we associate the sequence (ũn, ṽn) defined on L2(Ω, R2) by

ũn(x) :=
n3∑

I=1

(
−
∫

Ωn
I

u

)
1Ωn

I
(x) and ṽn(x) :=

n3∑
I=1

(
−
∫

Ωn
I

v

)
1Ωn

I
(x). (3.17)

Thanks to the regularity of u and v the sequence (ũn, ṽn) uniformly converges
to (u, v). Therefore (ũn, ṽn) strongly converges to (u, v) in L2(Ω, R2). We
moreover claim that

Jµn(un, vn) = Jµn(ũn, ṽn) + O(
1

n
) (3.18)

= Jµ(ũn, ṽn) + O(
1

n
).

It follows, from (3.18) and from the continuity of the functional Jµ in the
strong topology of L2(Ω, R2), that

lim sup
n→∞

Jµn(un, vn) = lim sup
n→∞

Jµ(ũn, ṽn) = J(u, v).

To conclude the proof of the τ -convergence of the sequence (Jµn) to Jµ it
remains to prove the claim (3.18).

Proof of the claim (3.18): Taking into account the definitions (3.12), (3.13)
and (3.17) we have

|Jµn(un, vn)− Jµn(ũn, ṽn)|

≤
n3∑

I=1

n3∑
I′=1

{
(an

II′)
11|
∫

Ωn
I

Tn
1(x)dx|+ (an

II′)
22|
∫

Ωn
I

Tn
2(x)dx|

+ 2(an
II′)

12|
∫

Ωn
I

Tn
3(x)dx|

}
, (3.19)

where
Tn

1(x) := [u(x)− u(x + wn
II′)]

2− [ũn(x)− ũn(x + wn
II′)]

2 ,

Tn
2(x) := [v(x)− v(x + wn

II′)]
2− [ṽn(x)− ṽn(x + wn

II′)]
2

14



and

Tn
3(x) := [u(x)− u(x + wn

II′)] [v(x)− v(x + wn
II′)]

− [ũn(x)− ũn(x + wn
II′)] [ṽn(x)− ṽn(x + wn

II′)] . (3.20)

Let us now estimate the three terms of (3.19) separately. We have, for a.e.
x ∈ Ωn

I

|Tn
1(x)| ≤ (|u(x)− ũn(x)|+ |ũn(x + wn

II′)− u(x + wn
II′)|)

×
(
|u(x)|+ |u(x + wn

II′)|+ |ũn(x)|+ |ũn(x + wn
II′)|

)
≤
(
| −
∫

Ωn
I

[u(x)− u(y)]dy|+ | −
∫

Ωn
I′

[u(y)− u(x + wn
II′)]dx|

)
×
(
|u(x)|+ |u(x + wn

II′)|+ |ũn(x)|+ |ũn(x + wn
II′)|

)
. (3.21)

Moreover since the diagonal of Ωn
I has length

√
3/n and since u is regular on

Ω we have ∣∣∣∣∣−
∫

Ωn
I

[u(x)− u(y)]dy

∣∣∣∣∣ ≤ ‖∇u‖∞

√
3

n
a.e. in Ωn

I (3.22)

and ∣∣∣∣∣−
∫

Ωn
I′

[u(y)− u(x + wn
II′)]dx

∣∣∣∣∣ ≤ ‖∇u‖∞

√
3

n
a.e. in Ωn

I . (3.23)

Using the fact that for a.e. x ∈ Ωn
I

(|u(x)|+ |u(x + wn
II′)|+ |ũn(x)|+ |ũn(x + wn

II′)|) ≤ 4‖u‖∞ ,

it follows from (3.21)-(3.23) that

|Tn
1(x)| ≤ (8

√
3‖∇u‖∞‖u‖∞)

1

n
a.e. in Ωn

I . (3.24)

Similarly we get

|Tn
2(x)| ≤ (8

√
3‖∇v‖∞‖v‖∞)

1

n
a.e. in Ωn

I . (3.25)

To estimate Tn
3(x) we first notice that

Tn
3(x) =

1

4

[(
an(x)− ãn(x) + bn(x)− b̃n(x)

)(
an(x) + ãn(x) + bn(x) + b̃n(x)

)
+
(
ãn(x)− an(x) + bn(x)− b̃n(x)

)(
an(x) + ãn(x)− bn(x)− b̃n(x)

)]
, (3.26)

where

an(x) = u(x)− u(x + wn
II′), ãn(x) = ũn(x)− ũn(x + wn

II′)

bn(x) = v(x)− v(x + wn
II′) and b̃n(x) = ṽn(x)− ṽn(x + wn

II′).

One easily verifies, using (3.22), (3.23) and the analogous estimates for v that
for a.e. x ∈ Ωn

I , we have

|an(x)− ãn(x)| ≤ 2‖∇u‖∞

√
3

n
and |bn(x)− b̃n(x)| ≤ 2‖∇v‖∞

√
3

n
. (3.27)
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Moreover we have, for a.e. x ∈ Ωn
I

|an(x) + ãn(x) + bn(x) + b̃n(x)| ≤ 4(u‖∞ + ‖v‖∞) (3.28)

and
|an(x) + ãn(x)− bn(x)− b̃n(x)| ≤ 4(‖u‖∞ + ‖v‖∞). (3.29)

It follows from (3.26)-(3.29) that

|Tn
3(x)| ≤ 4

√
3

n
(‖∇u‖∞ + ‖∇v‖∞)(‖u‖∞ + ‖v‖∞) a.e. in Ωn

I . (3.30)

Finally substituting the inequalities (3.24), (3.25) and (3.30) back in (3.19)
allows us to establish the claim (3.18). Indeed, using (3.24) we obtain the
following estimate for the first term in (3.19):

n3∑
I=1

n3∑
I′=1

(an
II′)

11

∣∣∣∣∣
∫

Ωn
I

Tn
1(x)dx

∣∣∣∣∣ ≤
n3∑

I=1

n3∑
I′=1

(an
II′)

11

∫
Ωn

I

|Tn
1(x)| dx

≤ (8
√

3‖∇u‖∞‖u‖∞)
1

n

n3∑
I=1

n3∑
I′=1

(an
II′)

11

∫
Ωn

I

dx

≤ (8
√

3‖∇u‖∞‖u‖∞)
1

n

n3∑
I=1

n3∑
I′=1

(an
II′)

11 1

n3

≤ (8
√

3‖∇u‖∞‖u‖∞)
1

n

n3∑
I=1

n3∑
I′=1

µ11(Ωn
I × Ωn

I′)

≤ 8
√

3(‖∇u‖∞‖u‖∞)µ11(Ω× Ω)
1

n
. (3.31)

Estimates for the remaining terms in (3.19) are obtained by similar analysis.
The claim (3.18) is then proved. This completes the proof of the τ -convergence
of the sequence (Jµn) to Jµ. Therefore Theorem 3 is proved. ut

With the preliminary results proved, we are now in a position to provide
the proof of our main result (Theorem 1).

4 Proof of Theorem 1

Let (Jµn) be the sequence defined by (3.13). For any fixed n ≥ 1 and any fixed
pair (I, I ′) ∈ {1, · · · , n3}2, the functional Jµn is a finite sum of energies of the
type ∫

Ω×Ω

(
u(x)− u(y)
v(x)− v(y)

)
·
(

A11 A12

A12 A22

)(
u(x)− u(y)
v(x)− v(y)

)
ν(dx, dy), (4.1)

where (Aij) is a 2×2 constant positive definite symmetric matrix and ν(dx, dy)
is a Radon measure on Ω × Ω whose projection ν(dx, Ω) on Ω is absolutely
continuous with respect to dx. Owing to Theorem 2, any functional of the type
(4.1) belongs to the closure M. Therefore, Remark 3 states that for any fixed
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n ≥ 1 the functional Jµn belongs to the closure M. Moreover, by Theorem 3
the sequence (Jµn) τ -converges to Jµ. We conclude the proof of Theorem 1 by
invoking Property 3. ut
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